SOIL CHEMICAL ANALYSIS OF ANCIENT ACTIVITIES IN CÉRÉN, EL SALVADOR: A CASE STUDY OF A RAPIDLY ABANDONED SITE

J. Jacob Parnell, Richard E. Terry, and Payson Sheets

Activities performed over long periods of time tend to leave soil chemical residues as evidence of those activities. Some of the questions studied in this paper deal with the interpretive capabilities provided by chemical patterns. Soil samples from Cerén, El Salvador, a well-preserved site, were analyzed for extractable phosphorus and heavy metals. We compared in situ artifacts collected from the site with chemical signatures that indicate activity areas. We found that elevated concentrations of phosphorus were associated with food preparation, consumption, and disposal. Heavy metals were associated with the interior of the structure where pigments and painted gourds were found. In this case, where well-preserved, in situ artifacts were available for analysis, we found that chemical analysis was effective in locating human activity areas. Our findings indicate that chemical analysis can be used to guide interpretation in areas of poor artifact preservation with reasonable accuracy, and in archaeological sites that underwent gradual abandonment.

With the development of studies directed toward household groups over the past few decades, the demand for more efficient means of interpreting archaeological evidence and analysis of space-use patterns has grown (Bawden 1982; Bermann 1994; Deetz 1982; Drennan 1988; Manzanilla 1987; Santley and Hirth 1993; Smith 1987; Tringham 1991; Wilk and Ashmore 1988; Wilk and Rathje 1982). There are, however, several difficulties that often hamper the efficient analysis of space-use patterns. Conventional interpretation based exclusively on artifact distribution can often be misleading due to poor preservation or disturbance of artifacts (Manzanilla and Barba 1990). However, unlike traditional artifacts that are easily transported or removed from the actual loci of activity, some chemical signatures are evidence of specific activity and usually become fixed in the soil where the activity took place. Thus, the development of soil chemical analysis provides an essential facet to the analysis of activity areas and space use, particularly in the field of household archaeology (Carr 1984; Kent 1984, 1987, 1990; Kroll and Price 1991). In order to study the role of chemical analysis in Maya household archaeology, we examined the relationship between soil chemical residues and activities through a combination of soil chemical analysis and traditional artifact- and architecture-based research in the well-preserved, rapidly abandoned site of Cerén, El Salvador. Our goal is to gain a more

J. Jacob Parnell and Richard E. Terry ■ Department of Agronomy and Horticulture, Brigham Young University, Provo, UT 84602, USA. E-mail: richard_terry@byu.edu
Payson Sheets ■ Department of Anthropology, University of Colorado, Boulder, CO 80309 USA. E-mail: sheetsp@spot.colorado.edu

Latin American Antiquity, 13(3), 2002, pp. 331–342
Copyright© 2002 by the Society for American Archaeology

331
complete understanding of chemical signatures and their association with activity areas.

Theoretical Framework

The underlying premise of soil chemical analyses is that activities performed in the same place over a long period of time leave behind distinct chemical signatures as residues that are trapped in the soil where they remain relatively unaffected over time (Barba and Ortiz 1992; Parnell 2001; Parnell et al. 2002). Unlike moveable artifacts, the spatial pattern of many chemicals fixed in the floor or soil remains relatively intact provided there is minimal disruption of the soil by natural processes or cultural practices.

Past studies involving soil chemical analyses have demonstrated significant interpretive potential in the study of prehistoric land-use and activity patterns (e.g., Ball and Kelsay 1992; Cavanagh et al. 1988; Coultas et al. 1993; Dunning 1993; Lippi 1988; Manzanilla and Barba 1990). Ethnographic studies aimed at the association of specific activities with chemical signatures demonstrate the interpretive value of chemical analysis (Barba and Ortiz 1992; Fernández et al. 2002; Hayden and Cannon 1983; Manzanilla 1996; Smyth 1990). In those studies, chemical data from floor and soil samples collected and analyzed from modern houses were compared with the ethnographic information on space-use and activity patterns. Although soil chemical analysis in archaeology encompasses a wide range of procedures, some of the more promising signatures come from phosphorus and heavy metal analyses (Entwistle et al. 1998; Manzanilla and Barba 1990; Middleton and Price 1996; Parnell 2001; Parnell et al. 2002; Terry et al. 2000; Wells et al. 2000).

Phosphate Analysis

The analysis of soil phosphorus (P) concentrations has a long tradition in archaeological research, and its utility in the study of domestic activities and land use is well established (Dauncey 1952; Proudfoot 1976; Sánchez et al. 1996; Terry et al. 2000; see Bethell and Máté 1989; Craddock et al. 1986; Gurney 1985; Hammond 1983; Scudder et al. 1996 for reviews). The phosphate ion is rapidly fixed by calcium, iron, and aluminum compounds in the soil; therefore, phosphate compounds remain stable in soils for very long periods of time.

The association of phosphate with human activities lies in the organic remains of food waste. Soil phosphate exists in a complex equilibrium of different forms, including inorganic P fixed by aluminum, calcium, and iron compounds; soluble and labile inorganic P; and organic P. Plants obtain their essential phosphate from the soluble and labile inorganic P forms found in the soil. When the plants are harvested and transported, the phosphate is relocated with them in the form of membranes and other cellular structures. As the plants in the form of food waste or fecal materials decompose, the mineralized phosphate is readily fixed on the surface of the soil particles. Eventually the outfield soils, where crops were grown, are depleted of soil phosphorus while the soil phosphorus concentrations of the areas of food preparation, consumption, and waste deposition are augmented. This process of phosphate transport and fixation implies that household gardens fertilized with organic waste would contain increased concentrations of phosphorus while areas of intensive agriculture that did not benefit from the enrichment of decomposing plants or remains would have lower concentrations (Eidt 1984; McManamon 1984; Woods 1977).

Ethnoarchaeological work by Barba and Ortiz (1992) demonstrated that phosphorus levels indeed correlate with known activities. They reported that high concentrations of phosphorus were found in the floors of kitchen and eating areas, while soils of the discard area for maize-soaking water showed moderate levels. Walkway soils exhibited low P concentrations. However, they indicated that further refinement of the methods and interpretation of results was necessary.

Heavy Metals

The past decade has witnessed a growing interest in the detection of trace elements, particularly heavy metals, e.g., copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) (Bintliff et al. 1990; Entwistle et al. 1998; Lambert et al. 1984; Lewis et al. 1993; Linderholm and Lundberg 1994; Parnell 2001; Parnell et al. 2002; Scudder et al. 1996; Wells et al. 2000). Metals are readily sorbed or precipitated on the mineral surfaces of calcareous soils and stuccos commonly found at Maya archaeological sites.

Activities of the ancient Mesoamericans involved the use of a variety of metal-containing substances. High Fe concentrations in soils could be found in areas associated with ancient Agave processing or
animal butchering (Manzanilla 1996). Hematite (iron oxide, Fe_2O_3) and iron ochre (hydrated ferric oxide, $Fe_2O_3$$\cdot$$H_2O$) were used in pigments. Cinnabar (mercuric sulfide, HgS) is a bright red mineral that was often used by the Maya as a decorative paint or dye for ritual purposes and is found in ceremonial or sacred areas, such as burials or caches. Additional minerals used as pigments included pyrolusite (manganese dioxide, MnO_2) for blacks, malachite (copper carbonate, $CuCO_3$$\cdot$$Cu$[OH]_2$) for greens, and azurite (copper carbonate, $2CuCO_3$$\cdot$$Cu$[OH]_2$) for blues (see Goffer 1980:167–173; see also Vázquez and Velázquez 1996a, 1996b for examples). Thus, heavy metal analysis of soils in and around residential and ceremonial architecture will prove useful in identifying areas of pigment processing and ritual activities. The use of heavy metal data in archaeology, however, is still in an incipient stage, and the interpretation of data from the highly calcareous soils and stuccos of lowland Maya sites requires further refinement.

Location

The Pre Columbian village of Cérén is located near San Salvador, El Salvador (Figure 1). A deep volcanic ash deposit suddenly entombed the Cérén site in approximately A.D. 600 (Sheets 1979a, 1979b, 1992, 2000; Sheets et al. 1990). Because the ash from the initial eruption of the Laguna Caldera was moist and fine-grained, it preserved even organic materials such as food stored in vessels, thatched roofs, and plants in gardens. The essentially complete preservation of architecture and artifacts in their original loci of storage and use allows for a higher degree of confidence in the reconstruction of activity areas than is usually possible (Brown and Sheets 2001; Sheets 1992, 1994, 2000; Sheets et al. 1990). Chemical residues associated with those activities are also likely to have been well preserved beneath the ash.

Cérén is a United Nations World Heritage Site of great importance because of the degree of artifact and architectural preservation, providing the unusual opportunity to study the behavioral processes that link them (Schiffer 1987; Webster et al. 1997). It is rare that archaeologists have the opportunity to analyze soils associated with known ancient activities. These conditions allowed us to test the efficacy of
Figure 2. Architecture and floor-contact artifacts of Structure 10 at Cerén. The building consists of two principal rooms (East and West) on an elevated platform, and an entryway and short corridor on the north leading to a large corridor on the east. The corridors were used for temporary food storage, processing, and dispensing to ceremony participants. The sacred artifacts for performances were stored in the East room. Analyzed soil and floor samples are indicated by number.

soil chemical data in the analyses of activity areas and space use.

Sample Collection

At Cerén, the availability of soil samples is limited because of the concern for the preservation of unique earthen structures. Yet, over the past 10 years, soil and floor samples have been collected during excavation for future pollen analysis. The soils of the Cerén site originated from the Tierra Blanca Joven tephras deposit from the great Ilopango eruption that occurred in the early fifth century A.D. (Dull et al. 2001; Sheets 1982; Zier 1992). The sandy soils at Cerén were reported by Olson (1983) to be less than 2.2 percent organic matter and mildly alkaline (pH 7.0 to 7.6). Researchers collected individual surface (0–5 cm) soil samples from areas of confirmed ancient human activity such as milpas (maize fields), pathways between buildings, and from the floor surface (0–5 cm) of a religious structure used for the production of ceremonials and feasting (Structure 10) in the Pre Columbian village (Figure 2). Samples from various depths of a midden near Household 2 were also obtained. The samples were collected during excavations in 1992 and 1993 for future pollen analysis. They represent a limited sample base for soil chemical analysis, but the information that can be gleaned from the samples collected from specific areas of known activities provides a unique view of ancient life.

With the cooperation of the Salvadoran National Museum, 27 soil samples were divided into two portions: one for pollen analysis as originally planned and the other for phosphate and heavy metal analyses. We had hoped to analyze more samples than those that are presented here. However, the earth-
quake of 1986 damaged the museum sufficiently that
collections had to be moved into temporary storage
in Santa Tecla, and one unfortunate result was that
only a few samples were available to us for analy-
sis. Background soil samples from undisturbed areas
were not collected because the extent of human occu-
pation of the ancient land surface is unknown. The
average extractable chemical concentrations of the
eight samples lowest in phosphate were used to
approximate background levels. The eight samples
included two each from a milpa and a pathway and
four samples outside the west wall of Structure 10.

The soil and floor samples were stored in small
paper bags in a clean, dry environment at the
museum storage facility until they were subsam-
pled in 1998. The bags remained intact and there
was no evidence of water damage or cross-contam-
ination of the samples. All samples were collected
with similar metal trowels and stored in paper so that
any possible chemical contamination would be the
same for all samples.

Chemical Analyses

Extractable Phosphate Procedure

The method of extractable phosphate analysis we
used is based on the Mehlich II extraction solution
and Hach reagents (Hach Co., Loveland, CO) (Terry
et al. 2000). Two grams of air-dried, sieved (<2 mm)
floor or soil sample were placed in one of six 50 ml
jars attached to a board for facilitation of simulta-
neous processing of multiple samples. Each soil sam-
ple was extracted with 20 ml of the Mehlich II
solution for five minutes. The samples were then
filtered and the filtrate collected in clean 50 ml jars.
One ml of the extract was dispensed to a vial, diluted
to 10 ml, and the contents of a PhosVer 3 powder
pillow was added to the vial. The sample was shaken
by hand for one minute and allowed to stand an addi-
tional four minutes for color development. The phos-
phate in the extract reacts with the contents of the
chemical pillow, giving a blue color. More phos-
pbate in the solution results in a darker color. The
concentration of phosphate in the samples is deter-
mined on a Hach DR 700 spectrophotometer at a
wavelength of 810 nm by comparing the transmitt-
ance with a standard curve. A more detailed descrip-
tion of the procedure and justification for its use in
archaeological samples can be found in Terry et al.
(2000).

Extractable Heavy Metal Analysis

Samples were analyzed for extractable heavy metal
concentrations using the DTPA (diethylentri-
aminopentaacetic acid) extraction procedure de-
veloped by Lindsay and Norvell (1978). In this
procedure, 10 g of air-dried, sieved (<2 mm) soil is
mixed with 20 ml of .005 M DTPA solution buffered
at pH 7.3 to extract the metals from the soil (Parnell
2001; Parnell et al. 2002). The samples are then
shaken for two hours, after which the extracting solu-
tion is separated from the soil by centrifugation and
filtration. The concentrations of copper (Cu), iron
(Fe), mercury (Hg), manganese (Mn), lead (Pb), and
zinc (Zn) were determined simultaneously on a
Thermo Jarrell Ash inductively coupled plasma
atomic emission spectrometer (ICP-AES) (Parnell
2001; Parnell et al. 2002).

Results and Discussion

Phosphorus

The sampled area of highest phosphorus concentra-
tion around Cerén Structure 10 probably was asso-
ciated with refuse disposal (Figure 3). The area to
the southeast of the structure may have been used
for temporary disposal of refuse and sweepings until
the waste could be removed. Feasting and deer-fert-
ility ceremonialism were interrupted by the volcanic
eruption that buried the site (Brown and Sheets
2001). Many pottery vessels found in the building
still contained food. This structure was used only
intermittently for feasting, so we would not expect
to find a great buildup of phosphorus as a cooking or
eating area of a household. The ceramic assemblage
at the southeast exterior of the structure was greater in
this area than any others tested (Table 1). The sam-
ple analyzed from the front of the structure and the
floor surfaces inside the rooms were the lowest in
phosphorus concentration. These samples were col-
clected from areas that probably would have been
well swept of phosphorus-rich organic wastes.

When Structure 10 was being excavated, it was
noted that the 30 m² to the east and the north of the
building were kept clean of artifacts, and the soil sur-
face was particularly flat and well-packed, evidently
from a combination of cleaning, surface preparation,
and the holding of ceremonial events involving many
people (Simmons and Villalobos 1993). In fact, only
one large sherd (maximum length over 8 cm) was
found in that area, in contrast to some 10 large sherds from different vessels found in the 2 m² area south of the structure coinciding precisely with the high phosphorus concentration (greater than 300 mg/kg) shown in Figure 3. During the excavations, this area south of Structure 10 was considered to be a provisional discard area for broken pottery, probably thrown over the wall from the east room, or more likely from the food preparation-serving area to the east of that room where most of the pots would have been broken. Much of the area west of the structure was relatively low in phosphorus. Four of the samples (numbers 59, 62, 64, and 66) were less than 24 mg/kg (Table 1). The sherd count of the four excavation units ranged from 0 to 4 per m².

Of the milpa, midden, and path samples, we found the highest concentration of extractable phosphorus in the midden, where food and other organic phosphorus-bearing materials would have been disposed (Table 1). The samples from this area contained above 50 mg/kg of extractable phosphorus. We found the lowest concentration of phosphorus in the soil samples from the path (about 5 mg/kg), where constant foot traffic and sweeping of pathways would have prevented an accumulation of phosphorus. Two soil samples taken from the milpa area were also low in extractable phosphorus (about 6 mg/kg). Removal of crops from the milpa would eventually deplete the soil phosphate. The milpa samples were located close to Household 2 but the phosphate data did not provide evidence that the milpa soils were enriched with household wastes. These findings illustrate that the soil is a valuable interpretive resource (Entwistle et al. 1998).

Ethnoarchaeological studies have demonstrated that phosphorus levels indeed correlate with known activities (Barba and Ortiz 1992, Fernández et al. 2002). Study authors reported that high concentrations of phosphorus were found in the floors of kitchen and eating areas, while soils of the discard
Table 1. Artifacts Collected from the Excavation Units and the Concentrations of Extractable Elements from the Soil and Floor Samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Whole Vessels</th>
<th>Sherd</th>
<th>Obsidian</th>
<th>Organics</th>
<th>Whole</th>
<th>Mehlich mg/kg</th>
<th>DTPA Extractable Elements mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ba</td>
<td>Cu</td>
</tr>
<tr>
<td>55</td>
<td>Doorway between the east and west rooms</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>fiber, seeds</td>
<td>42</td>
<td>1.27</td>
<td>3.93</td>
</tr>
<tr>
<td>56</td>
<td>North side of the east room</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>0.80</td>
<td>5.37</td>
</tr>
<tr>
<td>57</td>
<td>Center of the east room</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1 painted gourd</td>
<td>196</td>
<td>1.03</td>
<td>4.72</td>
</tr>
<tr>
<td>58</td>
<td>North side of the east room</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>2.28</td>
<td>8.83</td>
</tr>
<tr>
<td>59</td>
<td>Southwest exterior</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0.92</td>
<td>2.99</td>
</tr>
<tr>
<td>60</td>
<td>Southwest exterior</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>1.03</td>
<td>3.43</td>
</tr>
<tr>
<td>61</td>
<td>Southwest exterior</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>1.60</td>
<td>2.57</td>
</tr>
<tr>
<td>62</td>
<td>Southwest exterior</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1.13</td>
<td>2.64</td>
</tr>
<tr>
<td>63</td>
<td>Southwest exterior</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>1.26</td>
<td>3.03</td>
</tr>
<tr>
<td>64</td>
<td>Southwest exterior</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>1.01</td>
<td>3.45</td>
</tr>
<tr>
<td>65</td>
<td>Southwest exterior</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>159</td>
<td>1.62</td>
<td>3.47</td>
</tr>
<tr>
<td>66</td>
<td>Southwest exterior</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>22</td>
<td>0.83</td>
<td>2.52</td>
</tr>
<tr>
<td>67</td>
<td>Step to the east room</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1.57</td>
<td>3.51</td>
</tr>
<tr>
<td>68</td>
<td>East exterior, north of step</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>68</td>
<td>0.91</td>
<td>4.49</td>
</tr>
<tr>
<td>73</td>
<td>Southeast exterior</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>181</td>
<td>0.95</td>
<td>3.84</td>
</tr>
<tr>
<td>74</td>
<td>Southeast exterior</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>208</td>
<td>1.09</td>
<td>3.85</td>
</tr>
<tr>
<td>75</td>
<td>Southeast exterior</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>171</td>
<td>1.20</td>
<td>3.99</td>
</tr>
<tr>
<td>76</td>
<td>Southeast exterior</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>405</td>
<td>1.03</td>
<td>4.13</td>
</tr>
<tr>
<td>550</td>
<td>Midden 20-25 cm</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>organic mold, 1</td>
<td>13</td>
<td>1.00</td>
<td>5.83</td>
</tr>
<tr>
<td>556</td>
<td>Midden 30-35 cm</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>65</td>
<td>0.83</td>
<td>3.99</td>
</tr>
<tr>
<td>559</td>
<td>Midden 35-40 cm</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0.91</td>
<td>3.43</td>
</tr>
<tr>
<td>562</td>
<td>Midden 40-45 cm</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>organic mold, 1</td>
<td>76</td>
<td>0.75</td>
<td>4.50</td>
</tr>
<tr>
<td>712</td>
<td>Midden 70-75 cm</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>organic mold, 4</td>
<td>13</td>
<td>0.88</td>
<td>2.27</td>
</tr>
<tr>
<td>2252</td>
<td>Milpa</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>5</td>
<td>1.26</td>
<td>4.09</td>
</tr>
<tr>
<td>2265</td>
<td>Milpa</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>6</td>
<td>0.81</td>
<td>3.76</td>
</tr>
<tr>
<td>703</td>
<td>Path</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>organic mold, 3</td>
<td>5</td>
<td>1.52</td>
<td>3.84</td>
</tr>
<tr>
<td>770</td>
<td>Path</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1.86</td>
<td>3.57</td>
</tr>
<tr>
<td>Average of eight samples*</td>
<td>13</td>
<td>1.17</td>
<td>3.36</td>
<td>11.18</td>
<td>3.93</td>
<td>18.41</td>
<td>3.02</td>
<td>1.33</td>
</tr>
</tbody>
</table>

*Sample nos. 2252, 2265, 703, 770, 59, 62, 64, and 66.
area for maize-soaking water showed moderate levels. Patio and pathway soils exhibited low P concentrations.

Heavy Metals

The highest levels of DTPA extractable iron were found in floor samples from the east room of Structure 10 and from the discard areas just south of the structure (Figure 4). Gerstle (1992) reported that the east face of the internal partition wall between the East and West room was painted red with hematite (iron oxide) paint. In addition, hematite paint was noted on the door jams and the cornices at the top of the partition wall. The abundance of deer bone and antler in the building (Gerstle 1992) indicates that deer must have been butchered somewhere in the site, and iron contained in the discarded blood and tissues may have contributed to iron accumulations. There was also an increased concentration of iron in the provisional discard areas south of the structure.

The iron concentration in the East room of the structure and the approximately equal concentration of iron over the wall to the south of the East room also appear to indicate human activities. Thus, we believe the sources of iron in the soils and floor could have been paints, ceremonial pigments, and wastes from deer butchering and the fashioning of deer artifacts for ceremonial performances in the East room of the building, and provisional discard from that room over the south wall where food and animal butchering wastes were temporarily stored.

The highest concentrations of mercury (Hg) and other heavy metals from the samples collected from Cerén were found in the north end of the East room of Structure 10 (Figure 5) in the same area as the high iron concentration, but more constricted. All three samples from this room had elevated concentrations of copper, mercury, iron, manganese, lead, and zinc. These metals are either associated with pigment compounds or are contaminants in the pigment ores.
facts recovered from this room include a painted deer skull headdress, six pottery vessels including one full of achiotite seeds, three painted gourds, and various small bone and stone artifacts (Gerstle 1992). Samples of the painted gourds were examined by X-ray fluorescence at the Smithsonian Center for Materials Research and Education, and the results all indicated hematite (Harriet Beaubien, personal communication 2001). Thus no architectural or artifactual source of the high mercury concentration is clear to us. The mercury probably was introduced as cinnabar (HgS), a red pigment, for painting at that end of the East room. What was being painted is unknown. Clearly, the chemical analysis of samples and the ceremonial artifacts such as elaborately painted vessels, ritual costume accessories, and pigment containers found in the center room indicate the heavy use of pigments (Gerstle 1992).

We compared the heavy metal concentrations of the soil samples from the midden with samples from the milpa and the path. Iron, manganese, and zinc were 1.5 times more concentrated in the midden sample while copper, mercury, and lead levels were about the same or lower (Table 1). This may reflect a heterogeneous disposal of food waste and craft-derived garbage.

Conclusions

Soil chemical analyses of anthropogenic soils and earthen floors served to positively identify areas of ancient activity. Coupled with the analysis of artifacts related to distinct activities, chemical analysis magnifies the interpretive capabilities of household archaeology. Most Maya sites were gradually abandoned and contain few in situ artifacts where they were originally placed. In these situations, soil chemical analyses can provide a powerful tool for archaeologists in the clarification of space use and the types of activity performed. However, the better-known Cerén activity areas have correspondingly diagnos-
tic levels of phosphorus and metals. Particularly striking is the high correspondence of food preparation and serving activities in the eastern corridor of Structure 10 and the high phosphorus just over the southern wall of that enclosure, evidently the provisional discard area for food processing waste and broken pottery. No less striking is the high iron concentration at the northern end of the East room and a corresponding high iron concentration over the south wall of that room. That is interpreted here as ancient storage and use of paints, ceremonial pigments, and wastes from deer butchering or the fashioning of deer artifacts for ceremonial performances. The interpretive potential of ancient activity areas through the use of soil chemical analyses is limited only by our understanding of specific ancient activities. The combination of quantitative soil chemistry data and unusually rich floor assemblages is expected to lead to more detailed views of Classic Maya households than have previously been possible. The development of soil chemical analyses will have significant implications for the future study of households in the Maya area and beyond.

Soil analyses have been widely used in pre-exca-
vation detection of archaeological sites and specific activity areas. We expect that soil chemical residue analysis will also be useful in the study of ceremonial areas, where pigments may have been used and sacrificial blood may have been spilled. In addition, heavy metal analysis can indicate whether some structures, though now eroded, were originally painted, possibly with designs and symbols that served as public expression of local identities, such as status, rank, or lineage (Wells et al. 2000).

Acknowledgments. Funds for this research were graciously provided by the National Science Foundation (# SBR-9974302) and by Brigham Young University. We appreciate the helpful cooperation of CONCULTURA officials in the Salvadoran Ministerio de Educacion, and in particular Arq. Maria Isaura Arauz and Arq. Mercedes Salazar for making accessible the soil samples stored from the Cerén site. We also appreciate the efforts of Andrea Gerstle in taking the samples while she was excavating in and around Structure 10. Brian McKee collected the other samples, and his work is gratefully acknowledged. Thanks go to Eric Jellen and Fabián Fernández for assistance with sample collection and analysis. We also wish to thank Bruce Webb, Director of the Soil and Plant Analysis Laboratory at Brigham Young University. We greatly appreciate the efforts of Harriet Beaubien, Smithsonian Center for Materials Research and Education, in promptly analyzing the three samples from the gourds of Structure 10, in time for us to include her results in this manuscript. Special thanks go to the anonymous reviewers for their help in making this paper better.

References Cited

Drennan, Robert D.

Dull, Robert A., John R. Southon, and Payson Sheets

Dunning, Nicholas P.

Eidt, Robert C.

Entwistle, Jane A., Peter W. Abrahams, and Robert A. Dodgshon

Fernández, Fabián G., Richard E. Terry, Takeshi Inomata, and Markus Eberl

Gerstle, Andrea

Goff, Zvi

Gurney, D. A.

Hammond, F. W.

Hayden, Brian, and Aubrey Cannon

Kent, Susan

Kent, Susan (Editor)

Kroll, Ellen M., and Price, T. Douglas (Editors)

Lambert, J. D. H., A. H. Siemans, and J. T. Arnason

Lewis, R. J., J. E. Foss, M. W. Morris, M. E. Timpson, and C. A. Stiles

Linderholm, Johan, and Erik Lundberg

Lindsay, W. L., and W. A. Norvell

Lippi, Ronald D.

Manzanilla, Linda (Editor)
1987 Cobs, Quintana Roo: análisis de dos unidades habitacionales Mayas. Universidad Nacional Autónoma de México, Mexico.

Manzanilla, Linda

Manzanilla, Linda, and Luis Barba

McManamon, Francis P.

Middleton, William D., and T. Douglas Price

 Olson, Gerald W.

Parnell, J. Jacob

Parnell, J. Jacob, Richard E. Terry, and Zachary Nelson

Proudfoot, B.

Sánchez, A., M. L. Canabate, and R. Lízcano
1996 Phosphorous Analysis at Archaeological Sites: An Opti-
mization of the Method and Interpretation of the Results.
Archaeometry 38:151–164.
Sankey, Robert S., and Kenneth G. Hirth (Editors) 1993
Prehispanic Domestic Units in Western Mesoamerica:
Studies of the Households, Compound, and Residence. CRC
Press, Boca Raton.
Schiffer, M. B. 1987
Scudder, S. J., J. E. Foss, and M. E. Collins 1996
Sheets, Payson D. 1979a
1979b
1982
1992
1994
2000
Sheets, Payson D., Harriet F. Beaubien, Marilyn Beaudry, Andrea Gerstle, Brian Mckee, C. D. Miller, Hartmut Spetzler, and David B. Tucker 1990
Household Archaeology at Cerén, El Salvador. Ancient Mesoamerica 1:81–90.
Simmons, Scott, and Susan Villalobos 1993
Smith, Michael E. 1987
Smyth, Michael P. 1990
Terry, Richard E., Perry J. Hardin, Stephen D. Houston, Jackson Mark W., Sheldon D. Nelson, Jared Carr, and Jacob Parnell 2000
Tringham, Ruth 1991
Vázquez Negrete, Javier, and Rodrigo Velázquez 1996a
1996b
Caracterización de materiales constitutivos de relieves en estucos, morteros, y pintura mural de la zona arqueológica de Palenque, Chiapas. In Eighth Palenque Round Table, 1993, edited by Martha J. Macri and Jan McHargue, pp. 107–112. The Pre-Columbian Art Research Institute, San Francisco.
Webster, David, Nancy Gonlin, and Payson D. Sheets 1997
Wilk, Richard R., and Wendy Ashmore (Editors) 1988
Woods, William I. 1997
Zier, Christian J. 1992

Received June 11, 2001; Accepted March 11, 2002; Revised: April 22, 2002.